THEORETICAL AND EXPERIMENTAL STUDY OF
A TURBULENT PLASMA JET

V. F. Sivirkin and N. M. Rogachev UDC 539.951.7

A computational technique and the results of an experimental study of a turbulent submerged
plasma jet are presented.

A study of the structure of a turbulent jet of low-temperature plasma showed that the total flow field
can be divided into three characteristic regions — initial, transition, and main regions [1]. Each of these
regions is characterized by its own behavior and it is therefore impossible to obtain a single solution for
the entire flow field. Investigation of the initial portion of a plasma jet was the concern of {2-8]. In [2-4],
a solution of the problem of the initial portion of a plane-parallel jet was hased on the differential equa-
tions for a turbulent jet boundary layer. In [7, 8], the same problem for a plane-parallel jet was solved
by means of the integral relations for a turbulent jet boundary layer. In [5], an experimental determina-
tion was made of the dynamic pressure profiles, temperatures, velocities, and concentrations for a jet
of argon plasma emerging into an accompanying flow of cold helium. Both the initial and main portions
were included in the experiments. Similar measurements were made [6] for a jet of nitrogen plasma emerg-
ing into stationary air.

A Topler photograph of a jet of water plasma is shown in [4] and a Ttpler photograph of a jet of
argon plasma in [7]. In both cases, emission was into stationary air with the jet boundary, as determined
from Topler photographs, being rectilinear. Results of studies of the main portion of a plasma jet are
givenin |2, 5, 6, 9, 10].

Profiles of dynamic pressures, velocities, temperatures, and changes in dynamic pressure and
enthalpy along the jet axis are given in [2]. Measurements of temperatureand velocity profiles and the axial
variation of dynamic pressure and temperature in an air plasma jet are given in [9]. Results of a theore-
tical analysis of the main portion based on the use of integral relations are also given. Profiles of dynamic
pressures in a hydrogen plasma jet are given in [10]. The possibility of using the method for the equi-
valent problem in the theory of heat conductivity for the analysis of plasma jets is pointed out.

There are practically no papers dealing with the analysis of flow in the transition region of a plasma
jet. At the same time, it is impossible to join the solutions for the main portion and the initial portion of
a plasma jet correctly without a solution of the problem for the transition region.

In this paper, an attempt is made to solve the problem of the transition region of a plasma jet by a
method developed in [1], and based on it, 2 computational method for a plasma jet is proposed for the en-
tire flow field.

Analysis of Plasma Jet

We consider a subsonic, turbulent, submerged plasma jet flowing out of a circular cylindrical nozzle.
A diagram of the propagationof sucha jetis shown in Fig. 1. Section 00 is the tip of the nozzle. The velocity
and enthalpy profiles in this section are assumed to be constant. Section H—H separates the inifial portion
with a kernel of constant parameters from the transition region. Section P—P separates the transition
region from the main region. The jet boundaries in all regions are assumed to be rectilinear.
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Analysis is based on integral relations for a jet boundary layer using Schlichting profiles. Con-
sideration of dissociation and ionization is accomplished by using in place of the equation of state an isobaric
relation between density and enthalpy obtained from an analytic approximation to data taken from [1]. This
procedure, given in [12], has been used in a number of papers [2~4, 7, 8].

Initial Portion. Under the assumptions made above, the jet can be considered as isobaric. Thus the
equation for conservation of momentum written for sections 0—0 and H—H will have the form

Yan
nyp,U%=2n f oUydy. (1)
°
This equation, the jet equation
You = Caly 2)
the Schlichting profiles for velocity and enthalpy in the initial portion
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make it possible to solve the problem of the geometric structure of the initial region.

According to [1], the coefficient kyj can be determined from

U
ky = o 6
" U ©
where the average velocity Uyy is calculated from:
Yoy
| pU%ydy
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Using the fact that I, > I, in all that follows, we find from Eqgs. (1)-(7)
2 1 2 I

2.5-—n+ b5—n 3.5—n 4 —n
b = . 8)
" 4 1 4 4 4 1 )

1.68 ; — — —
4———n_r7——n+6.5——n 55—n bH—n 8—n

The factor 1.68 is introduced in the denominator so that the coefficient ky goes to one for an isothermal jet
(n = 0). For the radial coordinate of the external boundary of the jet in the section H—H and length of the
initial portion, we obtain:

y =——~:i9.:“r‘
T V2[B,—B)
Yo
X, = L T (10)
" cykav 2(B,—By)
where
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Fig. 1. Diagram of submerged plasma jet propaga-
tion.

The angle o of the external boundary with respect to the axis of the jet in the initial region is found from
the equation

You — Yo
X,

tg @y = = cky [1—v 2(B,— B |. (13)

H

Equations (3)-(5), (9), and (10) enable one to calculate all geometric and thermodynamic jet parameters
in the initial region.

Main Portion. The equations for conservation of momentum and excess enthalpy, written for the
section 0—0 and an arbitrary section in the main portion, will have the form:

Y2
nylp U = 2n s pUydy, (14)
0

Y2
TYopolo (lo —1o) = 2a | pU (I — 1) yely. (15)
0

Schlichting formulas are used for the velocity and enthalpy profiles in the main portion:

U 1.5y2
= (1 —E"%,
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Using Egs. (5) and (14)-(17) and assuming I; > I, and Iy, > I, we obtain for the variation of axial param-
eters along the axis of the jet:

1 2
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Fig. 2. Dimensionless dynamic pressure profiles in the
main portion of turbulent submerged jets: 1) theory; 2)
present work, Ty = 3900°K, x/y, = 16-42; 3) the same,
but Ty = 4400°K; 4) from experiments of V. Ya. Bezmenov
and V. S. Borisov with air plasma jet [2], T = 4000°K,

x/ vy = 16-33; 5) from experiments of O'Connor, Com-
fort, and Cass with nitrogen plasma jet [6], Tq = 5800°K,
x/yy = 14-28.
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To establish a relation between y, and x, we use the jet equation [1]

d
—f— =k, = tga,. 23)
According to [1, 9], the coefficient k, can be found from

U

k, = —2 24
°= Uuy (24)
where
yg Y2
Uav= | pu2ydy/ | pUydy. (25)
0 0

Considering Egs. (16), (17), (24), and (25), we have
(5.333 —n) (4.333 —n)

0 = (26)
1.93(4 —n)(3—n)

The factor 1.93 in the denominator is introduced for the same reason as the factor 1.68 in the expression
for k. Since k is independent of x, we obtain after integration of (23)

Yo =1Y, P+ Coko (x - xp)~ (27)

This equation is only valid for the main portion. In order fo use it, it is necessary to know the radial and
longitudinal coordinate of the transition section P—P. This can be accomplished by solving the problem
for the transition region.

Transition Portion. The remark has been made [1] that in the case of an incompressible fluid, the
external boundary of the transition region is a straight line which is a continuation of the external boundary
of the initial portion. In the case of plasma jets, this is confirmed by Tdpler photographs 4, 7]. On this
basis, the equation

yz = yo + tg aﬂx’ . (28)

which is valid for the initial portion, will also be true for the transition portion.
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Fig. 3. Profiles of dimensionless excess temperatures in the main portion of turbulent sumberged jets:
—) theory; @) present work, T = 3900-1400°K, x/y, = 21; O) experimental results of V. Ya. Bezmenov
and V. S. Borisov for an air plasma jet [2], Ty = 4000°K, x/y, = 10-17.

Fig. 4. External jet boundary y,, m as a function of the longitudinal coordinates x, m: —) theory; O)
present work, T = 3900°K; @) present work, T, = 4400°K.

Within the limits of the transition region, a gradual transition takes place from the behavior in the
initial region to the behavior in the main region with the values of the axial parameters of the jet de-
creasing during the transition from section H—H to section P—P. To establish the nature of this decrease
for an incompressible jet, it was recommended [1] that the lines of equal velocity values in the transition
portion be considered as a continuation of the corresponding rays in the initial portion. Calculations made
on the basis of this proposal for a plasma jet give an increase of dynamic pressure over the length of the
transition region, which is in contradiction with the physical picture of the flow. For a plasma jet, it is
physically more valid for one to consider that lines of equal dynamic pressure in the transition region are
a continuation of the corresponding lines in the initial portion. Using this concept and Egs. (8)-(5), we
obtain for the axial variation of dynamic pressure in the transition region

Ol o5y (29)
ol = M (2n;° — 3",
where 1y, =¥,/ egkpyx is a dimensionless axial coordinate in the transition region which is equal to n when
y =0; cgkpx is that width of boundary layer of the initial portion which it would have propagating to a given
cross section in the transition portion. Using Egs. (28) and (29), we have

3~—n

6—n
U2 S pliy
Om U’; = 9 I: Ys tg Oy :| 2 . { Ys tg Oy } 2 X (30>
Pty cﬂkﬂ(yz_yo) CHkH (y-z - yo)

If equality of the axial values of dynamic pressure and jet width at section P—P is required as a con-
dition for matching the transition and main regions, we determine pmpUl,p/ poU% and vop from a joint solu
tion of Eqs. (20) and (30). This solution is found most simply by a graphical method. The quantities xp,
Ump/ Uy, and I, p/I; can be found from Egs. (28), (18), and (19), if the value of Vo P is inserted in them
in place of y,. This data is used as input for the calculation of the main portion of the jet.

Note that calculations based on Eq. (29) give values greater than unity for megn/ poU? in the range
0.7 < 7y < 1.0. As shown by an analysis of the data in [1], this is associated with the fact that Eq. (3)
gives an overestimate for U/ U, in comparison for experimental values in the indicated range of variation
of n, and Eq. (4) gives an underestimate for 1/I,. However, this situation does not lead to significant error
in the determination of jet parameters at the section PP since the section P—P for plasma jets corre-
sponds to Ny, ~ 0.6, which is a region of satisfactory agreement between Eqs. (3) and (4) and experiment.

Analysis of the equations for conservation of momentum and excess enthalpy leads one to recommend
the following approximate expressions for calculating the variation of axial velocity and axial enthalpy over
the length of the transition region:
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Fig. 5. Topler photograph of argon plasma jet.
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The velocity and enthalpy profiles in an arbitrary section of the transition portion can be calculated
from the approximate formulas

U o 2=X g — (-0 + 225 -, @)
Um xP——xH xP——xH
RISt (1—8)+ F X (] ), (34)
I, Xp— Xy Xp— Xy

which are obtained from the consideration that the profiles should correspond to behavior in the initial por-
tion for x = xpy and to behavior in the main portion for x = xp.

EXPERIMENTAL RESULTS

A study was made of a subsonic air plasma jet emerging from the cylindrical nozzle, 12 mm in diam-
eter, of a constant-current plasmotron. In the experiments, dynamic pressure profiles were measured in
transverse sections of the jet located at distances x = 101, 156, 190, and 256 mm from the tip of the nozzle.
Sampling of the gas in a water piezometer was accomplished by means of a water-cooled copper probe with
an external diameter of 4 mm and an internal diameter of 0.9 mm. Radial variation of gas temperature in
the jet was determined only in cross sections most distant from the nozzle tip by L-shaped, uncooled tung-
sten—tungstorhenium and platinum— platinorhodium thermocouples, the junctions of which were placed along
the flow. Thermocouples and cooled probe were moved in the vertical and horizontal directions in the jet
flow field by a2 mechanical device. Measurements were made in a horizontal plane which passed through the
point of maximum dynamic pressure.

Dimensionless profiles of dynamic pressure and excess temperature are shown in Figs. 2 and 3 which
are satisfactorily approximated by theoretical curves. Other experimental data [2, 6] are also shown for
comparison. The temperature profiles shown are equivalent to enthalpy profiles because the temperatures
are low in the specified jet cross sections and specific heat can be considered to be constant.

The solid line in Fig. 4 indicates jet boundaries calculated on the assumption of infinitely large initial
heating. Also plotted in the same figure are experimental points which show the position of the external
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boundary of the main portion as determined from our measurements of the dynamic pressure profile. It

is clear that the width of the jet increases as the initial heating rises. This conclusion is in agreement with
the results of a theoretical calculation for the main region. The experimental points also indicate the
rectilinearity of the external jet boundary in the main portion. The existing discrepancy between theoretical
and experimental jet boundaries in the main portion is explained by the circumstance that the assumption of
an infinitely large initial heating is too crude for the initial temperatures actually occurring in this work.

An evaluation of o4 based on experimental data of Zabudkina [10], and assuming the pole of the jet is
located in the section 0—0, gives good agreement with the theoretical values for «,. This enables one to
consider the theory presented above as valid for jets with an initial temperature above 5000°K.

As confirmation of the assumption in the theory of the reactilinearity of the external boundary of
the initial and transition portions of the jet, a Topler photograph of an argon plasma jet taken from {7] is
shown in Fig. 5. The photograph was made with an IAB-451 Topler tube.

NOTATION
X,y are the axial and radial coordinates;
U is the velocity;
T is the temperature;
I is the enthalpy;
0 is the density;
A n are constant depending on the kind of gas and the temperature range;
CH, Cp are the experimental constants of initial and main sections, respectively;
O, ®g are the angle of inclination of external boundary to jet axis in initial and main
sections, respectively;
ky, Ky are the expansion coefficients of jet in initial and main sections, respectively;
T is the gamma-function;
N =y~ /¥, —¥1) is the dimensionless ordinate of initial section;
E=y/y, is the dimensionless ordinate of main and transition sections.

Subscripts

0 refers to conditions at nozzle tip;
H refers to section H—Hj;
P refers to section P—P;
m refers to jet axis;
1 refers to internal boundary;
2 refers to external boundary;
c denotes position in jet when properties are half their values on jet axis.
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